There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

- You have cookies disabled in your browser. You need to reset your browser to accept cookies or to ask you if you want to accept cookies.
- Your browser asks you whether you want to accept cookies and you declined. To accept cookies from this site, use the Back button and accept the cookie.
- Your browser does not support cookies. Try a different browser if you suspect this.
- The date on your computer is in the past. If your computer's clock shows a date before 1 Jan 1970, the browser will automatically forget the cookie. To fix this, set the correct time and date on your computer.
- You have installed an application that monitors or blocks cookies from being set. You must disable the application while logging in or check with your system administrator.

Why Does this Site Require Cookies?

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

What Gets Stored in a Cookie?

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

effective stiffness having designed our. structure based on this is the elastic. stiffness based on moment curvature. analysis of the particular section so we. worthwhile noting that displacement. based design can be used at present in. most seismic design codes if validated. by a nonlinear time history analysis so. most codes will say you should design. Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. SEISMIC DESIGN OF TIMBER BUILDINGS WITH A DIRECT DISPLACEMENT-BASED DESIGN METHOD C. Loss, M. Piazza and D. Zonta Department of civil, environmental and mechanical engineering, University of Trento, Italy ABSTRACT: Modern seismic design procedures are widely represented by the concept of Performance-Based Seismic Design (PBSD). Direct Displacement-Based Design (DDBD) procedure for PBSD of buildings is considered a very promising method which uses displacement as an input design parameter. 2007) is a design method that can be used for PBSD of structures. In DDBD, the displacement is considered as a performance parameter to use when designing structural members.